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The experimental procedure of determining the structure of a liquid by diffraction 
techniques is reformulated herein as a stochastic experiment subject to the data analysis 
formalism of statistical spectral analysis. Observed in such an experiment are averaged 
local microscopic fluctuations from the bulk density. The intensity function then 
represents a stochastic spectrum and it becomes necessary to statistically estimate a 
minimum bias, minimum variance covariance function which is the net radial distribution 
function. A low-pass tapered data window produces such an optimum estimate. 

1. INTRODUCTION 

Several decades of X-ray and neutron diffraction experimentation on simple 
liquids and solutions has given rise to structural data which has been embedded 
within and analysed in terms of a “detemzinistic” Fourier analysis formalism 
originally suggested by Zernicke and Prins. The current state of the art and 
relevant theory in this field have been elucidated in a recent exposition by 
Pings.’ 

We suggest herein an alternative data analysis scheme for liquid structure 

t Present Address: Exploratory Research, American Can Company, Neenah, Wis. 54956 
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256 A. J .  STARSHAK AND R. D. LARSEN 

determination which is a direct consequence of considering that the measure- 
ment process inherent in a diffraction experiment, the data arising therefrom, 
and the molecular physics of the liquid state constitute stochastic processes. 
I t  is then natural to employ the formalism of spectral analysis of time series 
in determining a “radial distribution function” characteristic of a specific 
liquid. 

Spectral analysis is a fundamental reformulation of the techniques of 
deterministic Fourier analysis for stochastic processes. This reformulation 
allows a recorded data set to be characterized by its individual frequency 
components. In the present application, the frequency components them- 
selves are of direct interest; in other applications they are used to produce a 
mathematical model of the stochastic process. 

We consider that the random density fluctuations of a liquid are a 
stochastic process which is able to be subjected to the formalism of statistical 
spectral analysis. 

Figure 1 exhibits a plot of the net radial distribution function of an 
ammonium fluoride solution.?. In this figure, the three distinct maxima are 
interpreted as three distinct solvation spheres in the hydrogen-bonded 

+ 2 . 5  

; .c 

- 2 . 5  

FIGURE 1 Net radial distribution function for N H , F . 3 . 5 7 H 2 0  from data taken at 
Oak Ridge National Laboratory. The points represent the calculated values for a single 
experiment and the line represents the average of  several experiments. 
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ANALYSIS OF LIQUID X-RAY DATA 257 

structure. These distinct solvation spheres are the averaged microscopic density 
fluctuations in the liquid as observed experimentally. 

To illustrate the stochastic nature of' this experimental data, Figure 2 
presents some of the detected x-rays scattered from an aqueous solution of 
ammonium fluoride.' The mean value is used as the estimator of the center of 
tendency, and the standard error is shown. I t  is evident from Figure 2 that, 
even with extreme care, the data set will not be reproduced exactly. Each 
point will cluster about some mean value, but deviations will occur. From 
such a series of determinations, each data point can be represented by a 
probability density function which indicates the most probable mean value 

7 3  

e = 25.3' 0 = 30.5' a ~ 3 5 . 0 "  

FIGURE 2 
fluoride solution for several experimental determinations. 

Mean value and standard errur of detected x-rays scattered from ammonium 
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SCATTERING IS A STOCHASTIC PROCESS 

FIGURE 3 
is governed by probability density function at that angle. 

Scattering is a stochastic process. Measured value of intensity at any angle 
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258 A. J. STARSHAK AND R. D. LARSEN 

and some measure of the scatter. In Figure 3 the x-ray diffraction data set is 
shown as a series of probability density functions, one for each value of the 
scattering angle 8 and each centering on the estimated mean value at that 
angle. 

We shall find it convenient to refer to any specific data set as a “time 
series”. A time series (being a measured realization of a stochastic process) is 
a random function of an independent variable; t h s  variable is usually time 
and hence the name, but it may be any other physical parameter such as 
distance, angle, or frequency.t 

While each time series has a Fourier transform each gives rise to frequency 
components quite different from other time series. Thus, the desired spectrum 
of a stochastic process is a consistent estimate (as defined statistically) of the 
frequency components of the stochastic process i t ~ e l f . ~  

A central task of spectral analysis is the estimation from a finite time 
series of the asymptotic covariance function y(r) of the underlying stochastic 
process. Then the Fourier transform of %r) is the spectrum, r(9. We have 
achieved consistent covariance estimates having a known bias and small mean- 
square error by employing a specific class of data windows which are dis- 
cussed in Section 3. 

2. STOCHASTIC DENSITY FLUCTUATIONS 

The central problem of ascertaining the local structure of a liquid from the 
point of view of this manuscript is the determination of the radial distribution 
function from a limited set$ of diffraction data. The Fourier transform of the 
diffraction data is usually expressed in terms of the net radial distribution 
function (1) (Figure 1) given by: 

2r 
rz Mr)  = 4nr2 [p(r)-c] = --I II si(s)sin rs ds 

Statistical spectral analysis addresses itself to precisely this same type of 
problem: the estimation of the Fourier transform of a limited empirical data 
set. 

t It is important to note that we are not herein considering a time dependent process. 

$ By “limited set of data” in this case we do not refer to the experimental absence of 
low and high angle data which theory, in part, provides. Rather, each intensity function 
is a realization of an ensemble of such intensity functions and as such, is an estimateof 
an asymptotic intensity function which is not experimentally accessible. 
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ANALYSIS OF LIQUID X-RAY DATA 259 

That which is measured is the scattered x-ray intensity, representing in 
reciprocal space the location of individual scatterers, averaged over both time 
and the sample. The intensity function is, from this viewpoint, a stochastic 
spectrum. What distinguishes this application from other time series 
applications is that the intensity data (the spectrum) is directly measured and 
does not have to  be statistically estimated.? Thus its accuracy is characteristic 
of the experimental procedure alone and is not based on the validity of any 
data-handling techniques. Note, however, that the intensity data do represent 
an estimate of the ensemble of all possible intensity realizations or the ergodic 
equivalent of an infinite frequency record. That which is statistically estimated, 
however, is the net radial distribution function which is a covariance function. 

3. D A T A  WINDOWS 

The use of convergence factors in the Fourier inversion of diffraction data 
assures the convergence of the Fourier integral over a finite range of the in- 
dependent variable. Waser and Schomaker document thirteen such “modifica- 
tion functions” for which the diffraction integral converges and then suggest 
how others may be constructed in a similar way.4 Two of these modification 
functions are referred to herein as the rectangular and Bartlett windows, and 
a third is similar t o  the Parzen window to the 3/4 power. Another is called 
the “temperature factor” but is essentially a Gaussian function and is called so 
here. The convergence factors used by Waser and Schomaker are an applica- 
tion of standard techniques of deterministic Fourier transform theory to the 
diffraction integral. 

The effect of calculating a biased estimate of the covariance function may 
be shown to be the same as multiplying the unbiased estimate by the Bartlett 
data window (I-r/M).’ In the transform domain each spectral estimate (that 
is, each calculated spectral point) is the result of a convolution of the spectral 
window and the neighboring spectral points. 

The bandwidth of the spectral window determines the number of neigh- 
boring points averaged in the convolution and the side lobes of the window 
specify their positive and negative weights. 

t It may be argued correctly that a measurement is itself an estimate but we attempt to 
distinguish here between an experimental realization and a postexperimental estimation 
procedure. 
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260 A. J .  STARSHAK AND R. D. LARSEN 

The design of an optimum data window has been discussed throughout the 
literature of spectral analy~is.~7' Six data windows are shown in Figure 4; 
their transforms are the spectral windows shown in Figure 5. Four of these 
windows, the rectangular, Bartlett, Tukey and Parzen, have a rich history in 
spectral analysis; they have been extensively characterized.' The Gaussian 
window has been a veIy important modification function in deterministic 

I O M  

SIX D4T4 WINDOWS 

FIGURE 4 Data windows. 
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SIX SPECTRAL WINDOWS 

FIGURE 5 Spectral windows. 
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ANALYSIS OF LIQUID X-RAY DATA 26 I 

diffraction data inversion? Finally, the "ideal window", upon which we wish 
to focus the most attention, corresponds to the shape of the ideal, low-pass 
fdter used by electrical engineers." This window has a flat pass band, a 
smooth transition band, and an effective stop band. 

The above data windows were used in the following way. The modified 
net radial distribution functions r2D(r), as calculated? from the variously 
modified reduced intensity functions si(s), were compared with the unmodified 
net radial distribution function r2D(r). The results group the Bartlett and 
Tukey windows, the rectangular and ideal windows, and the earzen and 
Gaussian windows in three recognizable categories. That the Parzen and the 
Gaussian windows are quite similar is satisfying, since the mathematical form 
for the Parzen spectral window is (sin x / x ) ~  and the Gaussian window is (sin 
x / x ) ~ ,  n>5. That the Tukey window is so similar to the Bartleet window is sur- 

.2., 

_ .  
Y . .  

-2 .  
3.0 2.2 

I I I I I 
1. n 

4 . d  5.3 :*) c . 3  10.0 . I . ,  

FIGURE 6 The net radial distribution function for NH, F.3.57H2 0 showing effect of 
smoothing by the ideal window. The points represent the best smoothed r* D*(r) and the 
line represents the unmodified r2 Dk). 

t In all cases a fast Fourier transform (FFT) algorithm was applied to compute the 
radial distribution function." The advantage of the algorithm for this purpose is its 
ability to transform from one domain to another with great accuracy because a discretely 
sampled continous function is expanded over a complete set of orthonormal exponential 
functions (see Ref. 11 for details). 
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262 A. J. STARSHAK AND R. D. LARSEN 

prising since the Tukey window has a smooth second derivative. Finally, thatthe 
ideal window is so similar to the rectangular window is initially disappointing 
until the r2 D(r) curves from each are more closely examined. 

Figure 6 shows these two curves. It is apparent that there is little bias 
stemming from the application of the ideal window. Figure 7 shows an enlarged 
view of the region from 2.7 to 6.0 A; the decrease in the variance of the net 
radial distribution function is most apparent in this region. From a comparison 
of these curves, it would appear that the ideal window produces a minimum- 
bias, minimum-variance estimate (relative to other such windows) of the 
theoretically perfect net radial distribution functi0n.t 

+3 

+ I  

C 

- I  
I I I 

3 4 5 6 
r ( A )  

FIGURE 7 
in variance o f  r* D(r) due to application of the ideal window. 

Enlarged view of  smoothed rz  D*(r) from 2.7 to 6.0 A showing the decrease 

t A measure of  the bias of the smoothing process can be obtained from the absolute 
value of the mean deviation o f  r’ D(r) from r’ D(r). Plots of these values along with plots 
of correlation coefficients comparing I’ D(r) smoothed by six windows and standard 
deviations of residual deviations between various smoothed values of I’D([) are contained 
in the disscrtation of A.J.S. Copies of these plots and other related tabulated quantities 
may be obtained from the authors. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



ANALYSIS OF LIQUID X-RAY DATA 263 

4. THE OPTIMUM DATA WINDOW 

Most of the data windows suggested for use with liquid diffraction data tend 
to oversrnooth. Although they eliminate most of the variance, they produce a 
bias which seems unacceptable. The ideal window, on the other hand, is 
basically a class of rounded or tapered rectangular functions for which the 
degree of smoothing can be varied. In attempting to ascertain the degree of 
smoothing which produces the best rz D*(r), the ideal window was constructed 
in the following manner: a rectangular window was terminated in a Parzen 
window at successively shorter distances, designated: L = 120, 112, 104,96, 
80, 64, and 32. (Thus, a monotone varying series of windows was produced 
between the extremes of the rectangular (L = 128) and the Parzen windows 
(L = 0); had the ideal window been constructed from the rectangular and 
Tukey windows, such a monotone series would have been formed between 
those two as the extremes.) The unmodified r2D(r) in the region 2.7 5 r _< 6.0 
was compared with rz D(r) curves calculated from s$s) modified with an ideal 
window for various L values. An inspection of the results showed that 
apparently for L = 1 12 and 104 no  bias disrupts the major maximum at 2.8 A. 
When L = 64, in addition. to the bias, the broader bandwidth shifted the 
maximum to a slightly larger r-value. Despite the first appearance of the bias 
in the peak at 2.8 A for L = 96 the modified curve flows through the minimum 
of the unmodified rz D(r) demonstrably more smoothly than for L = 80. Thus, 
it appears that if the tapering is initiated anywhere between L = 80 and L = 104 
an excellent (in the sense described above) rz D*(r) is obtained. For conve- 
nience, L = 96 or L/M = 314 was chosen as the optimum point to begin 
tapering of the ideal window. 

5. SMOOTHING AND THE SINGLE EXPERIMENT 

The traditional way of the experimentalist to reduce the variance in empirical 
data is to average N independent determinations. In this way, the variance is 
reduced by the factor N-”*. Another way to reduce the variance in this 
context is the Bartlett technique: smooth the covariance function of the data 
before taking the transform.” This was done with a single experimental data 
set in the same manner as outlined in the last section. 

The results of using different smoothing windows parallel the results of 
the last section. As expected, the effect of the rectangular window was 
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264 A. J .  STARSHAK AND R .  D. LARSEN 

exactly the same as the effect of using no window. The results of using the 
Bartlett, Tukey, Parzen, and Gaussian windows were to oversmooth the 
variance and generate much bias. 

A thorough ,examination of the influence of the ideal window on the 
transform of the single data set showed the best results came from an ideal 
window with L = 64. Figure 8 gives the net radial distribution function with 
the line representing the averaged ?@r) unsmoothed and with the points 
representing the best rZDT(r) from the single experimental data set smoothed 
with L = 64. Tlus figure shows that the single experimental data set can be 
smoothed to  give an rZDT(r) as smooth as that from the averaged data set 
(but not as smooth as can be calculated from the averaged data set smoothed 
with an ideal window.) 

6. SUMMARY 

Upon identification of (a) the net radial distribution function r2D(r) as the 
covariance function and (b) the reducedintensity function si(s) as the spectrum 
known techniques for treating a stochastic process can be applied to the 
analysis of liquid diffraction data. 

+2.5 

I I I 1 I I 
4.0 6.0 10.0 12.0 r ( A )  

FIGURE 8 The net radial distribution function for NH, F.3.57H2 0 showing the in- 
fluence of the ideal window on a single data set. The points represent the calculated values 
r2 D, ( r )  from a single experiment and the line represents the smoothed r z  D:(r) for L= 64. 
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This analysis correctly identifies the underlying molecular process as a 
stochastic process, not a deterministic process as has been tacitly assumed in 
the standard analysis. Thus, a distinguishing feature of a liquid - translational 
molecular motion - becomes an essential factor in the treatment and inter- 
pretation of the data. 

A low-pass tapered data window has been seen to produce a relatively 
minimum-bias, minimum-variance estimate of the transform. As such it proves 
to be an aid in enhancing the information content of the empirical data. 

Finally, it  was seen that a smoothing of the data from a single experiment 
gave a result virtually as reliable as that obtained from the average of several 
experiments. 

Our recommendation based on these results is that experiments be designed 
to collect data that is relatively closely spaced and of relatively long record 
length and then to employ covariance smoothing of the resulting data using an 
appropriate tapered data window of the type described herein. 
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